
Risk Averse Bayesian Reward Learning for Autonomous Navigation
from Human Demonstration

Christian Ellis1, Maggie Wigness2, John Rogers2, Craig Lennon2, and Lance Fiondella1

Fig. 1: Simplified illustration to demonstrate the impact of distributional shift. Left: Training environment. Middle: Test
environment. Right: Planned trajectories in the testing environment for various learning methods.

Abstract—Traditional imitation learning provides a set of
methods and algorithms to learn a reward function or policy
from expert demonstrations. Learning from demonstration has
been shown to be advantageous for navigation tasks as it allows
for machine learning non-experts to quickly provide information
needed to learn complex traversal behaviors. However, a minimal
set of demonstrations is unlikely to capture all relevant infor-
mation needed to achieve the desired behavior in every possible
future operational environment. Due to distributional shift among
environments, a robot may encounter features that were rarely or
never observed during training for which the appropriate reward
value is uncertain, leading to undesired outcomes. This paper
proposes a Bayesian technique which quantifies uncertainty over
the weights of a linear reward function given a dataset of
minimal human demonstrations to operate safely in dynamic
environments. This uncertainty is quantified and incorporated
into a risk averse set of weights used to generate cost maps for
planning. Experiments in a 3-D environment with a simulated
robot show that our proposed algorithm enables a robot to avoid
dangerous terrain completely in two out of three test scenarios
and accumulates a lower amount of risk than related approaches
in all scenarios without requiring any additional demonstrations.

I. INTRODUCTION

Robot behavior can be described through a reward function
which directs the robot toward states leading to the achieve-
ment of goals and developer specifications [1]. This encoding
often focuses on goals defined during system design, implicitly
expressing indifference to all others, resulting in negative side
effects [2] such as the robot traversing a harmful terrain
or crashing into an obstacle. Inverse reinforcement learning
(IRL) [3]–[5] seeks to learn a reward function given a dataset
of demonstrations, which eliminates the need for an expert to

*This work was supported by the Army Research Laboratory.
1 Christian Ellis is a PhD Student and Lance Fiondella is an Associate

Professor in the Department of Electrical and Computer Engineering at the
University of Massachusetts Dartmouth, USA.

2 Maggie Wigness, John Rogers, and Craig Lennon are researchers at the
United States Army Research Laboratory (ARL).

hand code these rewards. However, the performance of these
approaches are sensitive to the features seen in the demon-
strations. Certain states and the features that describe them
may have never been encountered, leading to uncertainty in
their reward [6], [7]. This presents a challenge for autonomous
navigation since it is desirable for a robotic system to be robust
to operation in unknown, possibly adversarial, environments
which are likely to contain unforeseen conditions.

As an example, consider an autonomous ground robot
which learns to navigate in an environment consisting of four
types of terrain, including grass, dirt, road, and water (Fig.
1 middle). In the training environment (Fig. 1 left), none of
the states contain the water feature, and subsequently neither
do the demonstrations. Maximum likelihood approaches such
as [5] implicitly set the reward weight for water to their
initialization value because its feature count is zero. Since
the demonstrations do not provide full reward information,
the robot fails to avoid water in the test environment (Fig.
1 right). Water may have been avoided if different initial
rewards were used, but this would not resolve the more general
problem of how to handle states possessing uncertain reward
values. As a step toward solving this problem, we propose
a systematic approach which utilizes Bayesian analysis to
quantify uncertainty for each terrain’s reward weight. This
approach allows the robot to achieve risk averse behavior by
avoiding terrain possessing high uncertainty (Fig. 1 right).

Previous imitation learning methods have provided a
Bayesian framework to incorporate prior information and
obtain a unique reward function [8], [9]. Most similar to our
work, Hadfield-Menell et al. [7] provide a Bayesian technique,
which explicitly considers safety to distributional shift in envi-
ronments. The difference between their methodology and ours
is the assumption of a Bayesian posterior. Specifically, they
obtain a posterior over reward functions given a proxy reward
function and a world model, while we do not assume a proxy

ar
X

iv
:2

10
8.

00
27

6v
1 

 [
cs

.R
O

] 
 3

1 
Ju

l 2
02

1



reward function is given, but rather a dataset of demonstra-
tions. This change in assumptions allows developers to obtain
a reward function which explicitly considers safety solely from
observed behavior. However, the main difference between Ref.
[7] and our methodology is in the reward function selection
technique. The reward function obtained in Ref. [7] changes
at runtime, requiring planning with multiple reward functions
online, whereas our technique outputs a single reward function
at the end of training. Online planning with a single reward
function reduces computational overhead, thereby increasing
the capability to scale to larger environments.

We build upon previous IRL work [10], which learned
traversal behavior reward models for autonomous navigation.
This method assigns high rewards to state features visited more
frequently during demonstration, implicitly assuming that high
visitation frequency means the state feature is better than those
visited less frequently. Our inclusion of uncertainty modifies
this assumption such that if a state feature is visited less it
is associated with more uncertainty. We propose risk averse
Bayesian reward learning (RABRL), as a method to obtain a
unique, risk averse linear reward function solely from a dataset
of demonstrations for autonomous waypoint navigation. The
contributions are twofold, we provide a methodology to quan-
tify uncertainty over reward functions from a set of human
demonstrations, and provide a weight selection technique,
which chooses a single weight set during training.

The remainder of the paper is organized as follows. Sec-
tion II summarizes relevant related work. Section III presents
our methodology showing how a posterior over reward func-
tions is used to obtain a unique set of risk averse weights.
Section IV describes experimental setup and results obtained
from an autonomous ground robot navigating in a 3-D simula-
tion. Section V concludes with areas this research can impact
and identifies opportunities for future extensions.

II. RELATED WORK

RABRL seeks to obtain risk averse navigation behavior
by learning a reward function from minimal human demon-
strations. Toward this end, this paper incorporates imitation
learning, Bayesian IRL, and safe autonomy. A brief overview
of each follows.

A. Learning from Demonstration

In reward learning, the goal is to obtain a unique reward
function from human demonstration that maps trajectories
to scalar rewards [11]. More generally, autonomous agents
learning solely from demonstrations to replicate behavior is
called imitation learning [12]. There are two distinct sub-fields
within imitation learning, behavioral cloning [13], [14] and
IRL [3]. A robot learns a policy directly in behavioral cloning,
whereas a robot implementing IRL learns a reward function,
which may then be used to obtain a policy.

IRL is an ill-posed problem [3] because many possible
reward functions can characterize robot behavior. Attempts
to identify effective solutions have led to several competing
methodologies. For a comprehensive survey, we refer the

reader to the following references [12], [15]–[17]. Neverthe-
less, previous work shows that learning from demonstration
scales to real robotic systems for both linear [10], [18], and
non-linear problems [19]. Similarly, deep learning approaches
to IRL have been successful in the Atari [20] and MuJoCo
environments [21]. Since we seek to learn a representative
reward function from minimal demonstrations, we employ a
linear model instead of a nonlinear deep-learning approach.

B. Bayesian IRL
Bayesian IRL methods provide a subjective approach to

reason about many different reward functions, assigning each
a point probability. Ramachandran and Amir [8] proposed
Bayesian IRL as a methodology to build a posterior density
over reward functions given a dataset of demonstrations. Choi
and Kim [9] developed a framework subsuming previous IRL
methods and showed that the maximum a posteriori estimator
is a better estimator than the posterior mean proposed in
[8]. Our paper also takes the Bayesian viewpoint to enable
the robot to quantifiably establish a belief over multiple
reward functions and evaluate their uncertainty. In contrast to
Refs. [8], [9], our methodology differs because we explicitly
consider safety when learning from demonstration.

C. Safe Autonomy
The reward function obtained from demonstrations in a

training environment may not be well suited for guiding robot
behavior in a new operational environment, leading to negative
side effects [2], [6]. Safe imitation learning seeks to obtain
behavior that avoids negative side effects [22]–[24]. Although
these approaches explicitly consider safety, they do not directly
address changes in the environment (distributional shift). Lut-
jens et al. [25] obtained model uncertainty estimates to avoid
novel obstacles from perception systems in the reinforcement
learning framework, but did not consider the imitation learning
scenario. Janson et al. [26] sought safe motion planning in
unknown environments, but only considered obstacle avoid-
ance and not a preference over different terrains. Hadfield-
Menell et al. [7] considered safety to distributional shift, but do
not explicitly consider learning from demonstration and their
weight selection technique changes at runtime. Our intended
use case is one in which training occurs from a dataset of
demonstrations in an environment that is likely to be different
than the operational environment. Consequently, we seek a
method to obtain a single reward model before operation in
a new environment, both for traceability and to save time
and computational resources, when operating online in the
deployment environment.

III. METHODOLOGY
An outline of the methodology follows. Section III-A for-

mally models the problem as an MDP without rewards. Section
III-B formulates the problem. Section III-C explains how the
likelihood of a demonstrator’s reward intent over terrains is
modeled. Section III-D describes two distributions to encode
prior reward information. Finally, section III-E describes our
methodology to select the reward weights for each feature.



A. Environment and Robot Modeling

An autonomous robot navigating in an environment is mod-
eled using a Markov Decision Process (MDP), M , represented
by the following tuple

M = 〈S,A, T,R, γ〉 (1)

where S is a set of states, A is a set of actions, T is the
state transition distribution over the next state given the present
state and action represented by T (st+1|st, a), R is the reward
function representing the numerical reward received by taking
action a ∈ A in state s ∈ S represented by R(s, a) : S×A →
R, and γ ∈ [0, 1) is the discount factor representing the weight
on future unseen rewards. The solution to an MDP is a policy
π(s) : S → A, determining the action a a robot will take in
state s. The optimal policy for an MDP (π∗) maximizes the
expected cumulative reward.

Scenarios where the agent finds itself in an unknown
environment are modeled by omitting R in Eq. (1).

M\R = 〈S,A, T,−, γ〉 (2)

In the reinforcement learning framework, a reward function is
considered to be the most succinct, robust, and transferable
definition of a task [3]. To learn a reward function, an agent is
supplied demonstrations in the form of trajectories that depict
the desired behavior. For a navigation task, the cumulative
reward associated with a trajectory demonstration can be found
through its state sequence ξ = [s1, s2, ..., sT ], where T is
the number of time steps. Although we only consider reward
functions that are a function of state R(st), one may also wish
to consider reward functions that are a function of the state and
action R(st, at) or reward functions that are a function of the
state, action, and next state R(st, at, s′t). This modeling choice
depends on the goals and preferences the system designer
desires the agent to learn [27]. Formally, this is an example of a
reward design problem [28], where the true reward function is
unobservable, but possible reward functions are assessed by a
fitness function given a distribution of environments the agent
may find itself in. The behavior of an agent operating in M\R
is summarized as a probability distribution over trajectories
given a vector of reward weights P (ξ|ŵ) and is referred to as
a robot model. For a list of robot models incorporating human
feedback, we refer the reader to [11].

B. Problem Formulation

We seek a posterior over the weights describing a reward
function,

P (w = ŵ|D) = P (D|ŵ)P (ŵ)
P (D) (3)

where w is a random vector describing the weights of a
reward function, ŵ is an estimator of w, D is a dataset
of demonstrations (navigation trajectories) such that D =
{(ξi), (ξi+1), . . . , (ξn)}ni=1.

We consider reward functions as a function of trajectory
states expressed as a linear combination between estimated
weights ŵ and features φ(s) representing a state such that

φ : S → RD, where D indicates the dimension of the feature
space.

R(s) = ŵTφ(s) (4)

The total reward for a trajectory is the sum of its state rewards.

R(ξ) =
∑
si∈ξ

ŵTφ(si) (5)

We define the reward space R is a discrete set of fixed
weight vectors, which parameterize a reward function. The
discrete setW contains all possible values for a single element
in the weight vector. The number of possible weight vectors
is therefore represented by the cardinality of W raised to the
dimension of the feature space, |R| = |W|D. The reward
space R should contain values representative of the number
of features and their scaled differences. At a minimum, |W|
should be equal to D, so that each feature may be assigned
a distinct value, representing the preference over features.
However, to enable a reward model to consider the scaled
reward difference, such as “water is 10 times worse than
grass,” a larger or non uniformly spaced set of values can be
specified to capture such preference. The training time of the
model increases as |R| and |S| increase, so it is important to
choose a value of |R| relative to the complexity of the domain.
The posterior is computed at |R| discrete points to obtain a
nominal probability for each point. These nominal points are
subsequently divided by their marginal probability producing
a valid discrete posterior distribution.

Alternatively, with the use of Markov Chain Monte Carlo
[29], a continuous posterior over reward functions can be
obtained, allowing one to model an infinite number of reward
functions. However, this requires numerically approximating
integrals, adding computational complexity during training.
Furthermore, in the context of our weight selection technique
(Section III-E), a continuous posterior would require using
differential entropy, which is difficult to interpret [30]. Due to
these limitations and the performance achieved with a small
number of reward functions (Section IV-C), we chose the
discretization approach.

C. Likelihood Modeling

The likelihood of a demonstrator assuming independent and
identically distributed trajectories is defined as the product of
the individual trajectories.

P (D|ŵ) = P (ξ1|ŵ)× P (ξ2|ŵ)× ...× P (ξn|ŵ)

=
∏
ξi∈D

P (ξi|ŵ) (6)

More specifically, we model the demonstrator using the max-
imum entropy IRL distribution [5].

P (D|ŵ) ∝
∏
ξi∈D

exp (βŵTE[φ(ξi)|ξi ∼ P (ξi|ŵ)]) (7)

where β ∈ [0, 1] represents the level of confidence in a
demonstrator. β = 0 indicates low confidence, such as random



behavior from a demonstrator, while β = 1 indicates optimal
behavior with respect to the reward preference over features.
The expected feature count is high when a trajectory ξi
obtains high rewards for a given robot model P (ξ|ŵ) relative
to all other trajectories and vice versa, as represented by
the dot product between weights and the expected feature
count. Therefore, an increase in the reward increases a weight
vector’s desirability, quantifying a preference over features
with respect to D.

The feature expectation of all demonstrated trajectories is:

E[φ(ξ)] =
∑
ξi∈ξ

P (ξi|ŵ)φ(ξi) (8)

Where ξ represents the set of all possible trajectories that can
be taken in the MDP.

Although several candidate robot models may be suitable
[11], we use maximum entropy IRL [5], which also contains
an algorithm to compute Eq. (8).

P (ξ|ŵ) = exp(ŵTφ(ξ))

Z(ξ)
(9)

Calculating the feature expectation directly is infeasible be-
cause it requires an agent to consider all possible trajectories
in the MDP, as captured in the normalization constant Z(ξ).
However, this can be approximated by using either the forward
backward algorithm or value iteration [31].

D. Prior Modeling

There are multiple ways to incorporate prior information
about reward weights, P (ŵ). For our work, we chose a mod-
ified uniform prior as an uninformative prior, and a Dirichlet
prior as an informative prior.

If a demonstrator does not prefer any one weight parama-
terization, a uniform prior may be used. However, if a reward
function has all the same weights for each feature, any set of
demonstrations appear Boltzmann optimal [3]. Therefore, we
use a modified version of the discrete uniform prior, where all
weight sets have equal probability unless all its weights are
the same, in which case its probability is zero.

P (ŵ) =

{
0 if, ŵ1 = ŵ2 = ... = ŵn

1
|R|−|W| otherwise

(10)

Each element in the weight vector ŵ above takes a value from
the discrete set W .

In some cases, a preference over terrains is known a priori,
and therefore can be captured by a Dirichlet prior, a continuous
multivariate generalization of the beta distribution

P (ŵ) =
1

Beta(α)

D∏
i=1

ŵαi−1
i ∀i, 1 < αi (11)

such that α ∈ RD
+ where each αi represents our preference

over a corresponding feature weight wi. The higher the αi, the
more density the component possesses. That is, a large value of
αi, corresponds to preference over all other components j for
which αi > αj is true. The Dirichlet distribution is subject

to the constraint
∑|W|
i=1 wi = 1. To satisfy this constraint,

a softmax function is applied to the current weight vector,
producing normalized weights.

ŵi ←
exp(ŵi)∑|W|
j=1 exp(ŵj)

(12)

In the Dirichlet prior, ŵ is assumed to be continuous, while
in Sec. (III-A) we have defined it to be discrete. However, a
proper prior is obtained as a result of applying Eq. (12) to a
given weight vector before obtaining the result in Eq. (11).

E. Planning Risk Averse Behavior

A Bayesian posterior is obtained by evaluating Eq. (3) for
|R| different reward vectors. A point evaluation is obtained
by multiplying the likelihood (Eq. (7)) and a prior (Eq. (11))
or (Eq. (10)) for each reward function in R. Then, a normal-
ization constant is computed by taking the sum of the point
products. The system designer can then quantify uncertainty
over ŵ. Uncertainty is expressed as the normalized Shannon
entropy of the marginal probability distribution of each feature
weight ŵi ∈ ŵ. The marginal probability is calculated by
holding the weight being marginalized constant and summing
over all possible values of the other n− 1 variates.

pwi
(k) =

∑
∀ŵj∈ŵ|ŵj 6=ŵi, ŵj∈|W|

P (w1, . . . , wi = k, . . . , wn)

(13)
Uncertainty is defined according to each individual feature,

since each corresponds to a distinct semantic meaning. The
overall uncertainty of each marginal distribution is quantified
by the normalized Shannon entropy

H(wi) = −
∑|R|
k=1 pwi(wk) log2 pwi(wk)

log2 |R|
(14)

yielding a value in the interval [0, 1]. An entropy of 0 indicates
certainty in the weight’s value, and a value of 1 represents
maximum uncertainty, the uniform distribution. Weights are
then chosen by their respective uncertainty using a specified
level of acceptable risk, ε, where smaller values of ε indicate
greater risk acceptance. When the entropy is greater than or
equal to the threshold, H(wi) ≥ 1 − ε, the lowest reward
weight is chosen. Otherwise, if H(wi) < 1− ε, the expected
value E[wi] of the marginal distribution is chosen as the
reward weight.

The weights of the linear reward function are then used
to produce a costmap for a navigation planning algorithm.
Costmap generation is a simple dot product between the
reward weight vector and the environment feature maps (dis-
cussed in Section IV-B). To assess model performance, we
express risk as the percentage of time the robot traversed a
potentially dangerous terrain, λ, throughout its trajectory,

Risk(ξ) =
∑
si∈ξ

λsi
|ξ|

(15)

where |ξ| represents the length of the trajectory and λsi is
an indicator function returning 1 when φ(si) contains the



dangerous feature λ and 0 otherwise. Assuming the unseen
terrain’s true reward is low or even negative, lower risk values
should be correlated with the robot’s safety.

Since risk alone is not a sufficient metric, we assess the
overall performance as the tradeoff between risk and path
length because longer paths tend to correspond with increased
energy use and time to complete a mission.

IV. EVALUATION

This section evaluates RABRL in a 3-D simulated environ-
ment for an autonomous navigation task using a ground robot
equipped with virtual sensors.

A. Experiment Overview

All experiments were performed in a simulated 3-D Unity
environment that represents a semi-structured village contain-
ing three terrain types describing our features, φ, namely
grass, asphalt and mud, as well as several obstacles, including
buildings, trees, and vehicles. Fig. 2 provides a birds-eye view
of the three terrain types and buildings in the environment.

Fig. 2: Birds-eye view of test scenarios in the simulated
environment. Terrain colors are as follows: green corresponds
to grass, brown to mud, and grey to asphalt.

This simulated environment possesses greater complexity than
the toy illustration shown in Fig. 1, including: (i) noisy
demonstrations due to imperfect perception and mapping, and
(ii) the requirement to plan kinematically feasible trajectories.

To facilitate objective comparison, each reward model learn-
ing approach was trained with the same set of demonstrations,
which were collected by having a human teleoperate the robot
in an area of the simulated environment. When collecting
these trajectories, the demonstrator stayed almost entirely on
asphalt, in an attempt to show the robot their preference

for driving on roads instead of grass. To showcase how the
approaches handle learning from training data that lacks a full
representation of the operating environment, demonstrations
were collected in an area where no mud was present, thereby
setting λ to correspond to the mud feature. This methodology
encompasses a number of real-world situations, including
applications where training data cannot be collected in the
precise operational environment or where there is significant
time lapse or adverse weather conditions that cause an envi-
ronment to change relative to the time at which training data
was collected.

Three different reward models were trained, including (i)
RABRL with a uninformed uniform prior, (ii) RABRL with an
informed Dirichlet prior, and (iii) Maximum Entropy IRL [10],
which serves as a baseline towards learning semantic terrain
rewards from human demonstrations, since both approaches
use Maximum Entropy as a robot model. Although the risk
aversion idea from Hadfield-Menell et al. [7] motivated this
work, the methodology described there seeks to resolve a given
misspecified, partially defined reward function. As mentioned
previously, RABRL seeks to learn a reward function solely
from a dataset of demonstrations without ever being given a
partially defined reward function, and is therefore difficult to
compare directly.

We compare performance of each method on the three
test scenarios shown in Fig. 2. To enable statistical analysis,
including hypothesis testing, the robot started at the same
location for each combination of test scenario and reward
model, navigating to the same goal waypoint. Moreover, each
combination of test scenario and reward model was run five
times to account for stochasticity from imperfect mapping.
The percentage of the time the robot went into the mud was
calculated for each trajectory with Eq. (15). Evaluation metrics
are averaged across the five trial results.

B. Robotic Autonomy Stack

A Clearpath Warthog equipped with an array of sensors
including a 3D LiDAR, IMU, and two monocular cameras
(Fig. 3) was deployed for the simulations. The robot possesses
a full autonomy stack consisting of three main subsystems,
namely mapping, perception, and planning. We briefly de-
scribe these subsystems, discussing how our contribution to
risk-averse costmap generation interfaces with each of these
subsystems.

The mapping subsystem is based on OmniMapper [32] and
provides the necessary localization for autonomous navigation.
The map from this subsystem represents a costmap layer for
obstacle avoidance used by the planning subsystem. The risk-
averse costmap acts as a second layer that provides terrain-
awareness to the planning system, enhancing the overall nav-
igation of the robot.

The perception subsystem includes semantic segmentation1

of camera images for an ontology of terrain and object classes

1For the experiments reported, we use the ground truth semantic segmen-
tation produced by the simulation.



Fig. 3: Simulated environment with Clearpath warthog running
ROS equipped with an array of virtual sensors.

such as grass, asphalt, and building. As images are segmented,
the semantic label of each pixel is used to accumulate evidence
for binary occupancy terrain grids, which represent the seman-
tic features, φ, used for reward model learning and risk-averse
costmap generation.

As previously mentioned, the planning subsystem uses
costmap layers generated from mapping and our IRL algorithm
to plan paths during navigation. Specifically, costmaps serve as
input to a global planner to search for the lowest-cost trajectory
between the robot’s location and a specified goal waypoint.
In our system, global planning is computed with the Search-
Based Planning Library [33] to find a kinematically achievable
plan by searching combinations of motion primitives.

C. Results

The dataset of demonstrations was used to train three
different reward models. If the robot were to operate fully
online, imperfections from all other subsystems (perception,
SLAM, mapping, and planning) would propagate. Therefore,
to best capture the performance of the proposed methodology,
a robot collects a map of its environment a priori and then
builds a costmap with respect to the learned reward weights.
However, the reward function obtained from RABRL could be
used to produce costmaps in an online setting.

For both of the RABRL reward models, Model (i) and
(ii), a multivariate posterior was obtained from Eq. (3). The
confidence parameter was set to β = 0.3 to indicate relatively
low confidence in the optimality of the demonstrator and
ε = 0.01 was used, resulting in a threshold of 1−0.01 = 0.99,
indicating a relatively high tolerance to uncertainty.

The reward weight associated with a terrain was allowed
to take on a value from the set W = {−2, ..., 1}. yielding a
reward space of 64 possible reward functions, since |W|D =
43 = 64. This domain allowed each feature to be assigned a

distinct value and also enabled a modest amount of reward
scaling, since |W| was one larger than D. For the maximum
entropy reward model, training was performed according to
the reward model outlined in [10].

TABLE I: Marginal Entropy

Reward Model Entropy - H(wi)

H(wgrass) H(wmud) H(wasphalt)

(i) RABRL w/ Unifrom 0.974 0.981 4.366 ∗ 10−14

(ii) RABRL w/ Dirichlet 0.759 0.797 2.781 ∗ 10−15

Table I shows the normalized Shannon entropy, as evaluated
by Eq. (14), of each marginal distribution obtained from
Eq. (13) for each terrain. Table I indicates that the normalized
marginal entropy for mud was highest in both models, while
the grass was second highest because the human demonstra-
tions attempted to avoid grass. However, both models are
virtually certain of the preference for asphalt, as indicated
by an entropy level close to zero. Moreover, the entropy of
Model (i) was higher because it employed an uninformed prior,
whereas an informed prior, such as the Dirichlet prior in Model
(ii), exhibited less uncertainty over the reward weights for each
terrain. If the risk acceptance parameter ε was larger, resulting
in less tolerance for risk, the respective reward weights would
change. Specifically ε = 0.05 results in weights of −2 for both
grass and mud in the uniform model, thereby exemplifying the
importance of an informed prior.

TABLE II: Feature Weight Vectors

Reward Model Feature Weight
wgrass wmud wasphalt

(i) RABRL w/Uniform -0.258 -0.687 1.000
(ii) RABRL w/Dirichlet -0.687 -1.253 1.000
(iii) Maximum Entropy IRL -0.304 0.000 0.567

Table II shows the estimated reward weight vector ŵ =
〈grass,mud, asphalt〉 corresponding to the terrain features,
which was determined with the weight selection technique
described in Section III-E. Model (iii) implicitly assigns the
mud a reward weight of zero, thereby indicating a preference
for mud over grass. Since mud was never encountered during
training, its gradient during maximum likelihood optimization
is always zero. Conversely, Models (i) and (ii) prefer every
other terrain more than mud due to its high uncertainty.

TABLE III: Total Average Risk Taken

Reward Model Total Risk
T1 T2 T3

(i) RABRL w/Uniform 0.2090 0.0000 0.0000
(ii) RABRL w/Dirichlet 0.0617 0.0000 0.0000
(iii) Maximum Entropy IRL 0.3120 0.1724 0.8992

Table III shows the average risk, which was computed by
averaging the values computed with Eq. (15) from the five runs



for each combination of test scenario and reward model. Ta-
ble III indicates that the proposed method, RABRL, achieved
lower risk in each test scenario and, in scenarios T2 and T3,
the robot found a path to traverse which avoided mud entirely.
Moreover, Table III shows that, in T1, the informed Dirichlet
prior (Model (ii)) accumulated approximately one third of
the risk of Uniform prior (Model (i)) and one approximately
one fifth of the risk of Maximum Entropy IRL (Model (iii)).
Furthermore, while the informed prior took less risk than its
uninformative counterpart, scenarios T2 and T3 show that it is
also possible to avoid side effects with uninformative priors.

To further clarify the observations made in Table III, Fig. 4
shows a birds eye view of the trajectories taken by Models
(i) and (iii) in T2. Model (iii) took a shorter path traversing
mud, while Model (i) took a longer path and never traversed
mud. Therefore, in certain scenarios RABRL was able to avoid
negative side effects, which occur due to distributional shift in
environmental terrain.

Fig. 4: Trajectory for Test Scenario 2 (T2) generated using
two reward models with waypoint region (blue circle).
Top: (i) RABRL w/ Uniform Bottom: (iii) MaxEnt IRL

Table IV shows the average path length computed with the
five runs on each combination of test scenario and reward
model. Table IV indicates that Model (iii) took the shortest
path in Test Scenarios T1 and T2. However, the path lengths
of Models (i) and (ii) were competitive with Model (iii) in T1
and T2 took substantially more risk as noted in Fig. 4. Thus,
in some scenarios, RABRL is able to substantially lower or
eliminate risk while preserving a low path length. Moreover,
in T3 Model (i) outperformed Model (iii) with respect to both
total average risk and path length.

TABLE IV: Average Path Length

Reward Model Test Scenario
T1 T2 T3

(i) RABRL w/Uniform 335.8 436.0 454.6
(ii) RABRL w/Dirichlet 343.4 431.0 492.6
(iii) Maximum Entropy IRL 327.0 267.2 465.0

Fig. 5 shows a scatter plot of the tradeoff between nor-
malized risk (Eq. (15)) and path length, include all five runs
for each combination of test scenario and reward model. To
rigorously illustrate that RABRL reduced risk substantially,
we performed a two means test on the risk taken for pairs of
models. For example, a two-tailed test with a null hypothesis
of equal risk in Models (ii) and (iii) was rejected in all three
scenarios at the 99.95% confidence level with p-values of
3.046034×10−8, 0.000449, and 1.122941×10−7 respectively,
strongly favoring RABRL. Furthermore, we performed a two
means test on the path lengths for pairs of models In some
cases, Model (iii) performed best, but in others the results were
equivocal. Specifically, a two-tailed test with a null hypothesis
of equal path lengths in Models (ii) and (iii) produced p-
values of 0.247475, 1.334867 × 10−5, and 0.227629 for the
three scenarios, suggesting that the null hypothesis of equal
path length could not be rejected at the 90% or even 80%
confidence level in Scenarios T1 and T3. Thus, while RABRL
took a longer path to avoid mud in T2 as was shown in Fig. 4,
the lower risk taken by RABRL demonstrated very strong
statistical significance without a significant increase in path
length in two of three scenarios.

Fig. 5: Tradeoff between risk and path length.



V. CONCLUSION

This paper proposed a Bayesian technique to express the
uncertainty over the semantic terrain reward weights of a
linear reward function obtained from a dataset of human
demonstrations. With the use of normalized Shannon Entropy,
the relative uncertainty over reward weights can be learned by
considering a small space of reward functions. Experiments
performed in a simulated 3D environment showed that a robot
may leverage its uncertainty over semantic terrains to choose
a trajectory with less risk. However, this may require longer
trajectories in some scenarios. Our proposed methodology,
RABRL, enables an agent to avoid potentially dangerous
terrain, while operating in an altered training environment.

The proposed technique is a member of the growing class of
imitation learning techniques, which explicitly seek to avoid
negative side effects that occur as a result of distributional
shift of operational environments. Safe semi- or unstructured
ground autonomy is likely to contain terrain scenarios never
encountered during training. Rather than undertake the in-
feasible task of attempting to capture such training data,
a proactive approach to quantify uncertainty will identify
gaps in training data and adapt behavior appropriately. By
resolving ambiguities, implicit biases, and misspecifications
in reward models obtained from human demonstrations, robots
will be able to make more informed decisions, leading to safer
behavior relative to their predecessors.

Future work includes exploring the potential application of
RABRL to non-terrain related features of an environment that
impose risk. Furthermore the use of MCMC methods may
be able to scale the reward space R, enabling larger scaled
differences between features. Similarly, our method requires
a feature indicator for a terrain whose reward weight is
unknown. Future work could include using non-linear models
on raw sensor data for feature extraction.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, Sep. 2013.

[2] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
D. Mané, “Concrete Problems in AI Safety,” arXiv:1606.06565 [cs],
Jul. 2016, arXiv: 1606.06565.

[3] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in Proceedings of the Seventeenth International Conference
on Machine Learning, ser. ICML ’00, 2000, p. 663–670.

[4] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, ser. ICML ’04. Banff, Alberta,
Canada: Association for Computing Machinery, Jul. 2004, p. 1.

[5] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in AAAI, vol. 8. Chicago, IL,
USA, 2008, pp. 1433–1438.

[6] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq,
L. Orseau, and S. Legg, “AI Safety Gridworlds,” arXiv:1711.09883 [cs],
Nov. 2017.

[7] D. Hadfield-Menell, S. Milli, P. Abbeel, S. Russell, and A. Dragan,
“Inverse Reward Design,” arXiv:1711.02827 [cs], Nov. 2017.

[8] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learn-
ing.” in Proceedings of the International Joint Conference on Artificial
Intelligence, vol. 7, 2007, pp. 2586–2591.

[9] J. Choi and K.-E. Kim, “MAP inference for bayesian inverse reinforce-
ment learning,” in Advances in Neural Information Processing Systems,
2011, pp. 1989–1997.

[10] M. Wigness, J. G. Rogers, and L. E. Navarro-Serment, “Robot Naviga-
tion from Human Demonstration: Learning Control Behaviors,” in IEEE
International Conference on Robotics and Automation (ICRA), Brisbane,
Queensland, May 2018, pp. 1150–1157.

[11] H. J. Jeon, S. Milli, and A. D. Dragan, “Reward-rational (implicit)
choice: A unifying formalism for reward learning,” arXiv preprint
arXiv:2002.04833, 2020.

[12] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters,
“An Algorithmic Perspective on Imitation Learning,” Foundations and
Trends in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[13] M. Bain and C. Sammut, “A framework for behavioural cloning.” in
Machine Intelligence 15, 1995, pp. 103–129.

[14] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observa-
tion,” in Proceedings of the International Joint Conference on Artificial
Intelligence, IJCAI-18, 7 2018, pp. 4950–4957.

[15] S. Arora and P. Doshi, “A survey of inverse reinforcement learning:
Challenges, methods and progress,” CoRR, vol. abs/1806.06877, 2018.

[16] S. Zhifei and E. M. Joo, “A survey of inverse reinforcement learning
techniques,” International Journal of Intelligent Computing and Cyber-
netics, vol. 5, 2012.

[17] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[18] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in Proceedings of the International Conference on Machine
learning, 2006, pp. 729–736.

[19] M. Wulfmeier, D. Z. Wang, and I. Posner, “Watch this: Scalable cost-
function learning for path planning in urban environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016, pp. 2089–2095.

[20] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei,
“Reward learning from human preferences and demonstrations in Atari,”
Advances in neural information processing systems, vol. 31, pp. 8011–
8023, 2018.

[21] D. S. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating
beyond suboptimal demonstrations via inverse reinforcement learning
from observations,” arXiv preprint arXiv:1904.06387, 2019.

[22] J. Zhang and K. Cho, “Query-efficient imitation learning for end-to-end
simulated driving,” in Proceedings of the AAAI Conference on Artificial
Intelligence, ser. AAAI’17. AAAI Press, 2017, p. 2891–2897.

[23] K. Menda, K. Driggs-Campbell, and M. J. Kochenderfer, “Ensembledag-
ger: A Bayesian approach to safe imitation learning,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 5041–5048.

[24] D. S. Brown, R. Coleman, R. Srinivasan, and S. Niekum, “Safe imitation
learning via fast Bayesian reward inference from preferences,” arXiv
preprint arXiv:2002.09089, 2020.

[25] B. Lötjens, M. Everett, and J. P. How, “Safe reinforcement learning
with model uncertainty estimates,” in IEEE International Conference
on Robotics and Automation (ICRA), 2019, pp. 8662–8668.

[26] L. Janson, T. Hu, and M. Pavone, “Safe motion planning in unknown
environments: Optimality benchmarks and tractable policies,” arXiv
preprint arXiv:1804.05804, 2018.

[27] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction,
second edition ed. Cambridge, Massachusetts: The MIT Press, 2018.

[28] S. Singh, R. L. Lewis, and A. G. Barto, “Where do rewards come from?”
in Proceedings of the annual conference of the cognitive science society.
Cognitive Science Society, 2009, pp. 2601–2606.

[29] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction
to MCMC for machine learning,” Machine learning, vol. 50, no. 1-2,
pp. 5–43, 2003.

[30] J. V. Michalowicz, J. M. Nichols, and F. Bucholtz, Handbook of
differential entropy. Crc Press, 2013.

[31] B. D. Ziebart, “Modeling purposeful adaptive behavior with the principle
of maximum causal entropy,” 2010.

[32] A. J. Trevor, J. G. Rogers, and H. I. Christensen, “Omnimapper: A
modular multimodal mapping framework,” in IEEE Proceedings of the
International Conference on Robotics and Automation, 2014, pp. 1983–
1990.

[33] M. Likhachev, “Search-Based Planning Library,” https://github.com/
sbpl/sbpl.

https://github.com/sbpl/sbpl
https://github.com/sbpl/sbpl

	I INTRODUCTION
	II RELATED WORK
	II-A Learning from Demonstration
	II-B Bayesian IRL
	II-C Safe Autonomy

	III METHODOLOGY
	III-A Environment and Robot Modeling
	III-B Problem Formulation
	III-C Likelihood Modeling
	III-D Prior Modeling
	III-E Planning Risk Averse Behavior

	IV Evaluation
	IV-A Experiment Overview
	IV-B Robotic Autonomy Stack
	IV-C Results

	V Conclusion
	References

